Real-Time Predicting the Low-Temperature Performance of WLTC-Based Lithium-Ion Battery Using an LSTM-PF Sequential Ensemble Model

Predicting an abnormally rapid decline in battery capacity in low-temperature environments is important for maintaining battery stability and performance. This study introduces a method that integrates cycling tests under various current conditions with deep neural network algorithms to identify and...

詳細記述

書誌詳細
出版年:IEEE Access
主要な著者: Min-Sung Sim, Do-Yoon Kim, Yong-Jin Yoon, Seok-Won Kang, Jong Dae Baek
フォーマット: 論文
言語:英語
出版事項: IEEE 2024-01-01
主題:
オンライン・アクセス:https://ieeexplore.ieee.org/document/10570406/