Real-Time Predicting the Low-Temperature Performance of WLTC-Based Lithium-Ion Battery Using an LSTM-PF Sequential Ensemble Model
Predicting an abnormally rapid decline in battery capacity in low-temperature environments is important for maintaining battery stability and performance. This study introduces a method that integrates cycling tests under various current conditions with deep neural network algorithms to identify and...
| 出版年: | IEEE Access |
|---|---|
| 主要な著者: | , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
IEEE
2024-01-01
|
| 主題: | |
| オンライン・アクセス: | https://ieeexplore.ieee.org/document/10570406/ |
