Machine Learning-Based Anomaly Detection on Seawater Temperature Data with Oversampling
This study deals with a method for anomaly detection in seawater temperature data using machine learning methods with oversampling techniques. Data were acquired from 2017 to 2023 using a Conductivity–Temperature–Depth (CTD) system in the Pacific Ocean, Indian Ocean, and Sea of Korea. The seawater t...
| 出版年: | Journal of Marine Science and Engineering |
|---|---|
| 主要な著者: | , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
MDPI AG
2024-05-01
|
| 主題: | |
| オンライン・アクセス: | https://www.mdpi.com/2077-1312/12/5/807 |
