Silting modules over a class of Morita rings

Let Δ=ANBAMABB\Delta =\left(\begin{array}{cc}A& {}_{A}N_{B}\\ {}_{B}M_{A}& B\end{array}\right) be a Morita ring, where M⊗AN=0=N⊗BMM{\otimes }_{A}N=0=N{\otimes }_{B}M. Let XX be left AA-module and YY be left BB-module. We prove that (X,M⊗AX,1,0)⊕(N⊗BY,Y,0,1)\left(X,M{\otimes }_{A}X,1,0)\oplus...

Full description

Bibliographic Details
Published in:Open Mathematics
Main Authors: Asefa Dadi, Xu Qingbing
Format: Article
Language:English
Published: De Gruyter 2024-05-01
Subjects:
Online Access:https://doi.org/10.1515/math-2024-0009