Machine learning surrogate for charged particle beam dynamics with space charge based on a recurrent neural network with aleatoric uncertainty

In this work, we develop a machine learning (ML) model with aleatoric uncertainty for the low energy beam transport (LEBT) region of the LANSCE linear accelerator in which we model the transport of a space-charge-dominated 750 keV proton beam through a lattice of 22 quadrupole magnets. Our ML model...

詳細記述

書誌詳細
出版年:Physical Review Accelerators and Beams
主要な著者: Cristina Garcia-Cardona, Alexander Scheinker
フォーマット: 論文
言語:英語
出版事項: American Physical Society 2024-02-01
オンライン・アクセス:http://doi.org/10.1103/PhysRevAccelBeams.27.024601