Skip to content
  • Home
  • Book Bag: 0 items (Full)
    • English
    • 日本語
    • 中文(简体)
    • 中文(繁體)
    • اللغة العربية
  • About
Advanced
  • A Genetic algorithm aided hype...
  • Cite this
  • Text this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Add to Book Bag Remove from Book Bag
  • Permanent link

A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with Explainable AI

Show other versions (1)
Bibliographic Details
Published in:PLoS ONE
Main Authors: Balraj Preet Kaur, Harpreet Singh, Rahul Hans, Sanjeev Kumar Sharma, Chetna Sharma, Md. Mehedi Hassan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611116/?tool=EBI
  • Holdings
  • Description
  • Other Versions (1)
  • Similar Items
  • Staff View

Internet

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611116/?tool=EBI

Similar Items

  • A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with Explainable AI.
    by: Balraj Preet Kaur, et al.
    Published: (2024-01-01)
  • An augmentation aided concise CNN based architecture for COVID-19 diagnosis in real time
    by: Balraj Preet Kaur, et al.
    Published: (2024-01-01)
  • SignExplainer: An Explainable AI-Enabled Framework for Sign Language Recognition With Ensemble Learning
    by: Deep R. Kothadiya, et al.
    Published: (2023-01-01)
  • Predicting cardiovascular risk with hybrid ensemble learning and explainable AI
    by: Pooja Shah, et al.
    Published: (2025-05-01)
  • Metric Ensembles Aid in Explainability: A Case Study with Wikipedia Data
    by: Grant Forbes, et al.
    Published: (2023-04-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs