Joint contrastive learning and belief rule base for named entity recognition in cybersecurity

Abstract Named Entity Recognition (NER) in cybersecurity is crucial for mining information during cybersecurity incidents. Current methods rely on pre-trained models for rich semantic text embeddings, but the challenge of anisotropy may affect subsequent encoding quality. Additionally, existing mode...

詳細記述

書誌詳細
出版年:Cybersecurity
主要な著者: Chenxi Hu, Tao Wu, Chunsheng Liu, Chao Chang
フォーマット: 論文
言語:英語
出版事項: SpringerOpen 2024-04-01
主題:
オンライン・アクセス:https://doi.org/10.1186/s42400-024-00206-y