Machine Learning Tailored Anodes for Efficient Hydrogen Energy Generation in Proton-Conducting Solid Oxide Electrolysis Cells
Highlights Machine learning technique was employed to develop anode for proton-conducting solid oxide electrolysis cells (P-SOEC). The screened high-performance La0.9Ba0.1Co0.7Ni0.3O3−δ (LBCN9173) and La0.9Ca0.1Co0.7Ni0.3O3−δ (LCCN9173) anodes achieved a synergistic enhancement of water oxidation re...
| 出版年: | Nano-Micro Letters |
|---|---|
| 主要な著者: | , , , , , , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
SpringerOpen
2025-05-01
|
| 主題: | |
| オンライン・アクセス: | https://doi.org/10.1007/s40820-025-01764-7 |
