Time-series and deep learning approaches for renewable energy forecasting in Dhaka: a comparative study of ARIMA, SARIMA, and LSTM models
Abstract Accurate forecasting of renewable energy generation is critical for sustainable energy planning in rapidly urbanizing cities like Dhaka. This study conducts a comprehensive comparative analysis of classical time-series models ARIMA and SARIMA and a deep learning model LSTM for long-term com...
| الحاوية / القاعدة: | Discover Sustainability |
|---|---|
| المؤلفون الرئيسيون: | , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
Springer
2025-08-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://doi.org/10.1007/s43621-025-01733-5 |
