A Variation of the Algorithm to Achieve the Maximum Entropy for Belief Functions

Evidence theory (TE), based on imprecise probabilities, is often more appropriate than the classical theory of probability (PT) to apply in situations with inaccurate or incomplete information. The quantification of the information that a piece of evidence involves is a key issue in TE. Shannon’s en...

詳細記述

書誌詳細
出版年:Entropy
主要な著者: Joaquín Abellán, Alejandro Pérez-Lara, Serafín Moral-García
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2023-05-01
主題:
オンライン・アクセス:https://www.mdpi.com/1099-4300/25/6/867