Synthesizing class labels for highly imbalanced credit card fraud detection data

Abstract Acquiring labeled datasets often incurs substantial costs primarily due to the requirement of expert human intervention to produce accurate and reliable class labels. In the modern data landscape, an overwhelming proportion of newly generated data is unlabeled. This paradigm is especially e...

詳細記述

書誌詳細
出版年:Journal of Big Data
主要な著者: Robert K. L. Kennedy, Flavio Villanustre, Taghi M. Khoshgoftaar, Zahra Salekshahrezaee
フォーマット: 論文
言語:英語
出版事項: SpringerOpen 2024-03-01
主題:
オンライン・アクセス:https://doi.org/10.1186/s40537-024-00897-7