An Improved Parallelized Multi-Objective Optimization Method for Complex Geographical Spatial Sampling: AMOSA-II

Complex geographical spatial sampling usually encounters various multi-objective optimization problems, for which effective multi-objective optimization algorithms are much needed to help advance the field. To improve the computational efficiency of the multi-objective optimization process, the arch...

詳細記述

書誌詳細
出版年:ISPRS International Journal of Geo-Information
主要な著者: Xiaolan Li, Bingbo Gao, Zhongke Bai, Yuchun Pan, Yunbing Gao
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2020-04-01
主題:
オンライン・アクセス:https://www.mdpi.com/2220-9964/9/4/236