The role of TFEB-mediated autophagy-lysosome dysfunction in manganese neurotoxicity

Excessive long-term manganese intake can inflict irreversible damage to the nervous system, with a predominant effect on the substantia nigra-striatum pathway. Through a mouse model simulating manganese exposure, we delved into its implications on the central nervous motor system, uncovering autopha...

Full description

Bibliographic Details
Published in:Current Research in Toxicology
Main Authors: Jiaqiao Lu, Peng Su, Fang Zhao, Kailun Yu, Xunbo Yang, Hui Lv, Diya Wang, Jianbin Zhang
Format: Article
Language:English
Published: Elsevier 2024-01-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666027X2400046X
Description
Summary:Excessive long-term manganese intake can inflict irreversible damage to the nervous system, with a predominant effect on the substantia nigra-striatum pathway. Through a mouse model simulating manganese exposure, we delved into its implications on the central nervous motor system, uncovering autophagy-lysosome dysfunction as a pivotal factor in manganese-induced neurotoxicity. Our research illuminated the molecular mechanisms behind TFEB’s role in manganese-triggered neuronal autophagy dysfunction, offering insights into the cellular and molecular mechanisms of manganese-induced abnormal protein accumulation. This study lays a significant theoretical foundation for future endeavors aimed at safeguarding against manganese neurotoxicity. Furthermore, TFEB emerges as a potential early molecular biomarker for manganese exposure, providing a solid basis for preemptive protection and clinical treatment for populations exposed to manganese.
ISSN:2666-027X