Multimodal Data-Driven Prediction of PEMFC Performance and Process Conditions Using Deep Learning

The proton-exchange membrane fuel cell (PEMFC) is one of the important technologies advancing sustainable energy. However, predicting its performance and optimizing processes is challenging due to the complexity of integrating various types of data with interdependent variables. This study introduce...

詳細記述

書誌詳細
出版年:IEEE Access
主要な著者: Seoyoon Shin, Jiwon Kim, Seokhee Lee, Tae Ho Shin, Ga-Ae Ryu
フォーマット: 論文
言語:英語
出版事項: IEEE 2024-01-01
主題:
オンライン・アクセス:https://ieeexplore.ieee.org/document/10704654/