Preparation and characterization of Palm Kernel Shell (PKS) based biocatalyst for the transformation of kernel oil to biodiesel

The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research' conclusions show that PKS has enormous...

Full description

Bibliographic Details
Published in:South African Journal of Chemical Engineering
Main Authors: E.O. Babatunde, S. Enomah, O.M. Akwenuke, M.A. Ibeh, C.O. Okwelum, M.M. Mundu, P.O. Adepoju, A.O. Aki, O.D. Oghenejabor, T.F. Adepoju, C.O. Ifedora, K. Mabel
Format: Article
Language:English
Published: Elsevier 2025-04-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1026918525000198
Description
Summary:The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research' conclusions show that PKS has enormous potential as a bio-fuel for the generation of syngas and biodiesel, as well as a bio-adsorbent, abrasive, detoxifying, antibacterial, antifungal, and antioxidant substance. Thus, in the presence of catalytically calcined kernel shell ash, this study uses bagasse from palm kernels as a bio-adsorbent of palm kernel oil for the production of biofuel. The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research's conclusions show that PKS has enormous potential as a biofuel for the generation of syngas and biodiesel, as well as a bio-adsorbent, abrasive, detoxifying, antibacterial, antifungal, and antioxidant substance. Thus, in the presence of catalytically calcined kernel shell ash, this study uses bagasse from palm kernels as a bio-adsorbent of palm kernel oil for the production of biofuel.Using definite screening design (DSD), the procedure was improved by taking into account four factors: reaction temperature, reaction duration, CSKP concentration, and methanol-oil-molar- ratio (MOH/OMR). These variables give rise to thirteen experimental runs. The ability of kernel shell bagasse to function as a bio-adsorbent for the transformation of high-acidity oil into low-acidity oil was demonstrated by the results. K>Mg>Ca>P>Na>Mn was discovered to be present in the developed CSKP. A biofuel yield of 99.73 % (wt/wt.) at a reaction time of 67.574 min, a reaction temperature of 67.116 min, a CKSP of 3.957 % (wt.), and a MOH/OMR of 1:7.989 in 100 outcomes at 100 % desirability were projected using statistical process optimization. Three experimental runs were used to validate the projected value, and an average value of 99.65 % (wt./wt.) was found. The catalyst can be recycled, and the biofuel grade that was created showed a high potential for energy.According to the study's findings, palm kernel fruit wastes have the potential to be used as a raw material to make biodiesel.
ISSN:1026-9185