Sensor-Based Bermudagrass Yield Prediction Models Using Random Forest Algorithm in Oklahoma

The current available direct and indirect forage biomass estimation methods are prohibitive for producers because they are labor-intensive and time-consuming. Current literature states that (i) machine learning algorithms are promising in agriculture, and (ii) proximity and multispectral sensors can...

詳細記述

書誌詳細
出版年:Agronomy
主要な著者: Gabriel Camargo de Campos Jezus, Lucas Freires Abreu, Daryl Brian Arnall, Lucas Martins Stolerman, Alexandre Caldeira Rocateli
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2025-04-01
主題:
オンライン・アクセス:https://www.mdpi.com/2073-4395/15/5/1004