Dynamic fine‐tuning layer selection using Kullback–Leibler divergence

Abstract The selection of layers in the transfer learning fine‐tuning process ensures a pre‐trained model's accuracy and adaptation in a new target domain. However, the selection process is still manual and without clearly defined criteria. If the wrong layers in a neural network are selected a...

詳細記述

書誌詳細
出版年:Engineering Reports
主要な著者: Raphael Ngigi Wanjiku, Lawrence Nderu, Michael Kimwele
フォーマット: 論文
言語:英語
出版事項: Wiley 2023-05-01
主題:
オンライン・アクセス:https://doi.org/10.1002/eng2.12595