Accounting for bias due to outcome data missing not at random: comparison and illustration of two approaches to probabilistic bias analysis: a simulation study

Abstract Background Bias from data missing not at random (MNAR) is a persistent concern in health-related research. A bias analysis quantitatively assesses how conclusions change under different assumptions about missingness using bias parameters that govern the magnitude and direction of the bias....

詳細記述

書誌詳細
出版年:BMC Medical Research Methodology
主要な著者: Emily Kawabata, Daniel Major-Smith, Gemma L. Clayton, Chin Yang Shapland, Tim P. Morris, Alice R. Carter, Alba Fernández-Sanlés, Maria Carolina Borges, Kate Tilling, Gareth J. Griffith, Louise A. C. Millard, George Davey Smith, Deborah A. Lawlor, Rachael A. Hughes
フォーマット: 論文
言語:英語
出版事項: BMC 2024-11-01
主題:
オンライン・アクセス:https://doi.org/10.1186/s12874-024-02382-4