Accounting for bias due to outcome data missing not at random: comparison and illustration of two approaches to probabilistic bias analysis: a simulation study
Abstract Background Bias from data missing not at random (MNAR) is a persistent concern in health-related research. A bias analysis quantitatively assesses how conclusions change under different assumptions about missingness using bias parameters that govern the magnitude and direction of the bias....
| 出版年: | BMC Medical Research Methodology |
|---|---|
| 主要な著者: | , , , , , , , , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
BMC
2024-11-01
|
| 主題: | |
| オンライン・アクセス: | https://doi.org/10.1186/s12874-024-02382-4 |
