Unsupervised learning architecture for classifying the transient noise of interferometric gravitational-wave detectors
Abstract In the data obtained by laser interferometric gravitational wave detectors, transient noise with non-stationary and non-Gaussian features occurs at a high rate. This often results in problems such as detector instability and the hiding and/or imitation of gravitational-wave signals. This tr...
| 出版年: | Scientific Reports |
|---|---|
| 主要な著者: | , , , , , , , , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
Nature Portfolio
2022-06-01
|
| オンライン・アクセス: | https://doi.org/10.1038/s41598-022-13329-4 |
