The evolution problem for the 1D nonlocal Fisher-KPP equation with a top hat kernel. Part 1. The Cauchy problem on the real line

We study the Cauchy problem on the real line for the nonlocal Fisher-KPP equation in one spatial dimension, \begin{equation*} u_t = D u_{xx} + u(1-\phi *u), \end{equation*} where $\phi *u$ is a spatial convolution with the top hat kernel, $\phi (y) \equiv H\left (\frac{1}{4}-y^2\righ...

Full description

Bibliographic Details
Published in:European Journal of Applied Mathematics
Main Authors: David John Needham, John Billingham, Nikolaos Michael Ladas, John Meyer
Format: Article
Language:English
Published: Cambridge University Press
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S0956792524000688/type/journal_article