Dense mapping from sparse visual odometry: a lightweight uncertainty-guaranteed depth completion method
IntroductionVisual odometry (VO) has been widely deployed on mobile robots for spatial perception. State-of-the-art VO offers robust localization, the maps it generates are often too sparse for downstream tasks due to insufffcient depth data. While depth completion methods can estimate dense depth f...
| 出版年: | Frontiers in Robotics and AI |
|---|---|
| 主要な著者: | , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
Frontiers Media S.A.
2025-09-01
|
| 主題: | |
| オンライン・アクセス: | https://www.frontiersin.org/articles/10.3389/frobt.2025.1644230/full |
