Accelerating Fair Federated Learning: Adaptive Federated Adam
Federated learning is a distributed and privacy-preserving approach to train a statistical model collaboratively from decentralized data held by different parties. However, when the datasets are not independent and identically distributed, models trained by naive federated algorithms may be biased t...
| الحاوية / القاعدة: | IEEE Transactions on Machine Learning in Communications and Networking |
|---|---|
| المؤلفون الرئيسيون: | , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
IEEE
2024-01-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/10584508/ |
