Trainability and Expressivity of Hamming-Weight Preserving Quantum Circuits for Machine Learning

Quantum machine learning (QML) has become a promising area for real world applications of quantum computers, but near-term methods and their scalability are still important research topics. In this context, we analyze the trainability and controllability of specific Hamming weight preserving variati...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Quantum
المؤلفون الرئيسيون: Léo Monbroussou, Eliott Z. Mamon, Jonas Landman, Alex B. Grilo, Romain Kukla, Elham Kashefi
التنسيق: مقال
اللغة:الإنجليزية
منشور في: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2025-05-01
الوصول للمادة أونلاين:https://quantum-journal.org/papers/q-2025-05-15-1745/pdf/