Lih Wang's and Dittert's conjectures on permanents
Let Ωn{\Omega }_{n} denote the set of all doubly stochastic matrices of order nn. Lih and Wang conjectured that for n≥3n\ge 3, per(tJn+(1−t)A)≤t\left(t{J}_{n}+\left(1-t)A)\le tperJn+(1−t){J}_{n}+\left(1-t)perAA, for all A∈ΩnA\in {\Omega }_{n} and all t∈[0.5,1]t\in \left[0.5,1], where Jn{J}_{n} is th...
| Published in: | Special Matrices |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2024-05-01
|
| Subjects: | |
| Online Access: | https://doi.org/10.1515/spma-2024-0006 |
