Lih Wang's and Dittert's conjectures on permanents

Let Ωn{\Omega }_{n} denote the set of all doubly stochastic matrices of order nn. Lih and Wang conjectured that for n≥3n\ge 3, per(tJn+(1−t)A)≤t\left(t{J}_{n}+\left(1-t)A)\le tperJn+(1−t){J}_{n}+\left(1-t)perAA, for all A∈ΩnA\in {\Omega }_{n} and all t∈[0.5,1]t\in \left[0.5,1], where Jn{J}_{n} is th...

Full description

Bibliographic Details
Published in:Special Matrices
Main Authors: Udayan Divya K., Somasundaram Kanagasabapathi
Format: Article
Language:English
Published: De Gruyter 2024-05-01
Subjects:
Online Access:https://doi.org/10.1515/spma-2024-0006
_version_ 1850092124965437440
author Udayan Divya K.
Somasundaram Kanagasabapathi
author_facet Udayan Divya K.
Somasundaram Kanagasabapathi
author_sort Udayan Divya K.
collection DOAJ
container_title Special Matrices
description Let Ωn{\Omega }_{n} denote the set of all doubly stochastic matrices of order nn. Lih and Wang conjectured that for n≥3n\ge 3, per(tJn+(1−t)A)≤t\left(t{J}_{n}+\left(1-t)A)\le tperJn+(1−t){J}_{n}+\left(1-t)perAA, for all A∈ΩnA\in {\Omega }_{n} and all t∈[0.5,1]t\in \left[0.5,1], where Jn{J}_{n} is the n×nn\times n matrix with each entry equal to 1n\frac{1}{n}. This conjecture was proved partially for n≤5n\le 5. Let Kn{K}_{n} denote the set of nonnegative n×nn\times n matrices whose elements have sum nn. Let ϕ\phi be a real valued function defined on Kn{K}_{n} by ϕ(X)=∏i=1nri+∏j=1ncj\phi \left(X)={\prod }_{i=1}^{n}{r}_{i}+{\prod }_{j=1}^{n}{c}_{j} - perXX for X∈KnX\in {K}_{n} with row sum vector (r1,r2,…rn)\left({r}_{1},{r}_{2},\ldots {r}_{n}) and column sum vector (c1,c2,…cn)\left({c}_{1},{c}_{2},\ldots {c}_{n}). A matrix A∈KnA\in {K}_{n} is called a ϕ\phi -maximizing matrix if ϕ(A)≥ϕ(X)\phi \left(A)\ge \phi \left(X) for all X∈KnX\in {K}_{n}. Dittert conjectured that Jn{J}_{n} is the unique ϕ\phi -maximizing matrix on Kn{K}_{n}. Sinkhorn proved the conjecture for n=2n=2 and Hwang proved it for n=3n=3. In this article, we prove the Lih and Wang partially for n=6n=6. It is also proved that if AA is a ϕ\phi -maximizing matrix on K4{K}_{4}, then AA is fully indecomposable.
format Article
id doaj-art-e552bf781cbd4c9385e4a78e0ea06295
institution Directory of Open Access Journals
issn 2300-7451
language English
publishDate 2024-05-01
publisher De Gruyter
record_format Article
spelling doaj-art-e552bf781cbd4c9385e4a78e0ea062952025-08-20T00:08:30ZengDe GruyterSpecial Matrices2300-74512024-05-0112174174610.1515/spma-2024-0006Lih Wang's and Dittert's conjectures on permanentsUdayan Divya K.0Somasundaram Kanagasabapathi1Department of Mathematics, Amrita School of Physical Sciences, Coimbatore Amrita Vishwa Vidyapeetham, Coimbatore641112, IndiaDepartment of Mathematics, Amrita School of Physical Sciences, Coimbatore Amrita Vishwa Vidyapeetham, Coimbatore641112, IndiaLet Ωn{\Omega }_{n} denote the set of all doubly stochastic matrices of order nn. Lih and Wang conjectured that for n≥3n\ge 3, per(tJn+(1−t)A)≤t\left(t{J}_{n}+\left(1-t)A)\le tperJn+(1−t){J}_{n}+\left(1-t)perAA, for all A∈ΩnA\in {\Omega }_{n} and all t∈[0.5,1]t\in \left[0.5,1], where Jn{J}_{n} is the n×nn\times n matrix with each entry equal to 1n\frac{1}{n}. This conjecture was proved partially for n≤5n\le 5. Let Kn{K}_{n} denote the set of nonnegative n×nn\times n matrices whose elements have sum nn. Let ϕ\phi be a real valued function defined on Kn{K}_{n} by ϕ(X)=∏i=1nri+∏j=1ncj\phi \left(X)={\prod }_{i=1}^{n}{r}_{i}+{\prod }_{j=1}^{n}{c}_{j} - perXX for X∈KnX\in {K}_{n} with row sum vector (r1,r2,…rn)\left({r}_{1},{r}_{2},\ldots {r}_{n}) and column sum vector (c1,c2,…cn)\left({c}_{1},{c}_{2},\ldots {c}_{n}). A matrix A∈KnA\in {K}_{n} is called a ϕ\phi -maximizing matrix if ϕ(A)≥ϕ(X)\phi \left(A)\ge \phi \left(X) for all X∈KnX\in {K}_{n}. Dittert conjectured that Jn{J}_{n} is the unique ϕ\phi -maximizing matrix on Kn{K}_{n}. Sinkhorn proved the conjecture for n=2n=2 and Hwang proved it for n=3n=3. In this article, we prove the Lih and Wang partially for n=6n=6. It is also proved that if AA is a ϕ\phi -maximizing matrix on K4{K}_{4}, then AA is fully indecomposable.https://doi.org/10.1515/spma-2024-0006permanentsdoubly stochastic matriceslih-wang conjecturephi-maximizing matrixdittert’s conjecture15a15
spellingShingle Udayan Divya K.
Somasundaram Kanagasabapathi
Lih Wang's and Dittert's conjectures on permanents
permanents
doubly stochastic matrices
lih-wang conjecture
phi-maximizing matrix
dittert’s conjecture
15a15
title Lih Wang's and Dittert's conjectures on permanents
title_full Lih Wang's and Dittert's conjectures on permanents
title_fullStr Lih Wang's and Dittert's conjectures on permanents
title_full_unstemmed Lih Wang's and Dittert's conjectures on permanents
title_short Lih Wang's and Dittert's conjectures on permanents
title_sort lih wang s and dittert s conjectures on permanents
topic permanents
doubly stochastic matrices
lih-wang conjecture
phi-maximizing matrix
dittert’s conjecture
15a15
url https://doi.org/10.1515/spma-2024-0006
work_keys_str_mv AT udayandivyak lihwangsanddittertsconjecturesonpermanents
AT somasundaramkanagasabapathi lihwangsanddittertsconjecturesonpermanents