Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle

Eccentric contraction–induced (ECC-induced) force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in EC...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:The Journal of Clinical Investigation
المؤلفون الرئيسيون: W. Michael Southern, Erynn E. Johnson, Elizabeth K. Fasbender, Katherine S. Fallon, Courtney L. Cavazos, Dawn A. Lowe, George G. Rodney, James M. Ervasti
التنسيق: مقال
اللغة:الإنجليزية
منشور في: American Society for Clinical Investigation 2025-03-01
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1172/JCI176942
_version_ 1849288767494422528
author W. Michael Southern
Erynn E. Johnson
Elizabeth K. Fasbender
Katherine S. Fallon
Courtney L. Cavazos
Dawn A. Lowe
George G. Rodney
James M. Ervasti
author_facet W. Michael Southern
Erynn E. Johnson
Elizabeth K. Fasbender
Katherine S. Fallon
Courtney L. Cavazos
Dawn A. Lowe
George G. Rodney
James M. Ervasti
author_sort W. Michael Southern
collection DOAJ
container_title The Journal of Clinical Investigation
description Eccentric contraction–induced (ECC-induced) force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss. We also showed that the cysteine proteome of skeletal muscle functioned as a redox buffer in WT and mdx muscle during ECCs, but that buffer capacity in mdx muscle was significantly compromised by elevated basal protein oxidation. Finally, chemo-proteomic data suggested that H2S protected several proteins central to muscle contraction against irreversible oxidation through persulfidation-based priming. Our results support a unifying, redox-based mechanism of ECC force loss in mdx muscle.
format Article
id doaj-art-e7d718121bd24f499c363f080e9ea785
institution Directory of Open Access Journals
issn 1558-8238
language English
publishDate 2025-03-01
publisher American Society for Clinical Investigation
record_format Article
spelling doaj-art-e7d718121bd24f499c363f080e9ea7852025-09-09T14:47:17ZengAmerican Society for Clinical InvestigationThe Journal of Clinical Investigation1558-82382025-03-011355Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscleW. Michael SouthernErynn E. JohnsonElizabeth K. FasbenderKatherine S. FallonCourtney L. CavazosDawn A. LoweGeorge G. RodneyJames M. ErvastiEccentric contraction–induced (ECC-induced) force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss. We also showed that the cysteine proteome of skeletal muscle functioned as a redox buffer in WT and mdx muscle during ECCs, but that buffer capacity in mdx muscle was significantly compromised by elevated basal protein oxidation. Finally, chemo-proteomic data suggested that H2S protected several proteins central to muscle contraction against irreversible oxidation through persulfidation-based priming. Our results support a unifying, redox-based mechanism of ECC force loss in mdx muscle.https://doi.org/10.1172/JCI176942MetabolismMuscle biology
spellingShingle W. Michael Southern
Erynn E. Johnson
Elizabeth K. Fasbender
Katherine S. Fallon
Courtney L. Cavazos
Dawn A. Lowe
George G. Rodney
James M. Ervasti
Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle
Metabolism
Muscle biology
title Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle
title_full Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle
title_fullStr Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle
title_full_unstemmed Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle
title_short Impaired hydrogen sulfide biosynthesis underlies eccentric contraction–induced force loss in dystrophin-deficient skeletal muscle
title_sort impaired hydrogen sulfide biosynthesis underlies eccentric contraction induced force loss in dystrophin deficient skeletal muscle
topic Metabolism
Muscle biology
url https://doi.org/10.1172/JCI176942
work_keys_str_mv AT wmichaelsouthern impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT erynnejohnson impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT elizabethkfasbender impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT katherinesfallon impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT courtneylcavazos impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT dawnalowe impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT georgegrodney impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle
AT jamesmervasti impairedhydrogensulfidebiosynthesisunderlieseccentriccontractioninducedforcelossindystrophindeficientskeletalmuscle