Iterative cleaning and learning of big highly-imbalanced fraud data using unsupervised learning

Abstract Fraud datasets often times lack consistent and accurate labels, and are characterized by having high class imbalance where the number of fraudulent examples are far fewer than those of normal ones. Machine learning designed for effectively detecting fraud is an important task since fraudule...

詳細記述

書誌詳細
出版年:Journal of Big Data
主要な著者: Robert K. L. Kennedy, Zahra Salekshahrezaee, Flavio Villanustre, Taghi M. Khoshgoftaar
フォーマット: 論文
言語:英語
出版事項: SpringerOpen 2023-06-01
主題:
オンライン・アクセス:https://doi.org/10.1186/s40537-023-00750-3