Iterative Sparse Identification of Nonlinear Dynamics

In order to extract governing equations from time-series data, various approaches are proposed. Among those, sparse identification of nonlinear dynamics (SINDy) stands out as a successful method capable of modeling governing equations with a minimal number of terms, utilizing the principles of compr...

詳細記述

書誌詳細
出版年:IEEE Open Journal of Signal Processing
第一著者: Jinho Choi
フォーマット: 論文
言語:英語
出版事項: IEEE 2024-01-01
主題:
オンライン・アクセス:https://ieeexplore.ieee.org/document/10750024/