Deep kernel learning approach to engine emissions modeling
We apply deep kernel learning (DKL), which can be viewed as a combination of a Gaussian process (GP) and a deep neural network (DNN), to compression ignition engine emissions and compare its performance to a selection of other surrogate models on the same dataset. Surrogate models are a class of com...
| 出版年: | Data-Centric Engineering |
|---|---|
| 主要な著者: | , , , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
Cambridge University Press
2020-01-01
|
| 主題: | |
| オンライン・アクセス: | https://www.cambridge.org/core/product/identifier/S2632673620000040/type/journal_article |
