EAD-YOLOv10: Lightweight Steel Surface Defect Detection Algorithm Research Based on YOLOv10 Improvement
In response to the issues of low detection accuracy (DA), slow speed, and missed detections caused by the complex texture background and diverse shapes of surface defects (SD) in steel, this paper designs an improved lightweight YOLOv10 model called EAD-YOLOv10. By incorporating an Adaptive Downsamp...
| الحاوية / القاعدة: | IEEE Access |
|---|---|
| المؤلفون الرئيسيون: | , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
IEEE
2025-01-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/10930899/ |
