Decompositions of a C-algebra
We prove that if A is a C-algebra, then for each a∈A, Aa={x∈A/x≤a} is itself a C-algebra and is isomorphic to the quotient algebra A/θa of A where θa={(x,y)∈A×A/a∧x=a∧y}. If A is C-algebra with T, we prove that for every a∈B(A), the centre of A, A is isomorphic to Aa×Aa′ and that if A is isomorphic...
| Published in: | International Journal of Mathematics and Mathematical Sciences |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2006-01-01
|
| Online Access: | http://dx.doi.org/10.1155/IJMMS/2006/78981 |
