Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential
The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabol...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Society for Microbiology
2018-11-01
|
Series: | mSphere |
Subjects: | |
Online Access: | https://doi.org/10.1128/mSphereDirect.00588-18 |
id |
doaj-004abbdcd6494c7b9945b3a2f2967b84 |
---|---|
record_format |
Article |
spelling |
doaj-004abbdcd6494c7b9945b3a2f2967b842020-11-24T21:35:57ZengAmerican Society for MicrobiologymSphere2379-50422018-11-0136e00588-1810.1128/mSphereDirect.00588-18Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic PotentialChristopher BulowAmy LangdonTiffany HinkMeghan WallaceKimberly A. ReskeSanket PatelXiaoqing SunSondra SeilerSusan JonesJennie H. KwonCarey-Ann D. BurnhamGautam DantasErik R. DubberkeThe spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one’s feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one’s feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants (n = 10, P < 0.01); however, only three participants exhibited major changes at the phylum level following exposure. In the cohort as a whole, beta-lactamase genes were enriched following Amox-Clav (P < 0.05), and predicted metabolic capacity was significantly altered (P < 0.01). Species composition, metabolic capacity, and beta-lactamase abundance returned to pre-antimicrobial exposure state 7 days after either autoFMT or saline enema (P > 0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.)https://doi.org/10.1128/mSphereDirect.00588-18antimicrobial resistancefecal microbiota transplantationmetagenomicsmicrobiomemultidrug resistance |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Christopher Bulow Amy Langdon Tiffany Hink Meghan Wallace Kimberly A. Reske Sanket Patel Xiaoqing Sun Sondra Seiler Susan Jones Jennie H. Kwon Carey-Ann D. Burnham Gautam Dantas Erik R. Dubberke |
spellingShingle |
Christopher Bulow Amy Langdon Tiffany Hink Meghan Wallace Kimberly A. Reske Sanket Patel Xiaoqing Sun Sondra Seiler Susan Jones Jennie H. Kwon Carey-Ann D. Burnham Gautam Dantas Erik R. Dubberke Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential mSphere antimicrobial resistance fecal microbiota transplantation metagenomics microbiome multidrug resistance |
author_facet |
Christopher Bulow Amy Langdon Tiffany Hink Meghan Wallace Kimberly A. Reske Sanket Patel Xiaoqing Sun Sondra Seiler Susan Jones Jennie H. Kwon Carey-Ann D. Burnham Gautam Dantas Erik R. Dubberke |
author_sort |
Christopher Bulow |
title |
Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential |
title_short |
Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential |
title_full |
Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential |
title_fullStr |
Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential |
title_full_unstemmed |
Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential |
title_sort |
impact of amoxicillin-clavulanate followed by autologous fecal microbiota transplantation on fecal microbiome structure and metabolic potential |
publisher |
American Society for Microbiology |
series |
mSphere |
issn |
2379-5042 |
publishDate |
2018-11-01 |
description |
The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one’s feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one’s feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants (n = 10, P < 0.01); however, only three participants exhibited major changes at the phylum level following exposure. In the cohort as a whole, beta-lactamase genes were enriched following Amox-Clav (P < 0.05), and predicted metabolic capacity was significantly altered (P < 0.01). Species composition, metabolic capacity, and beta-lactamase abundance returned to pre-antimicrobial exposure state 7 days after either autoFMT or saline enema (P > 0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.) |
topic |
antimicrobial resistance fecal microbiota transplantation metagenomics microbiome multidrug resistance |
url |
https://doi.org/10.1128/mSphereDirect.00588-18 |
work_keys_str_mv |
AT christopherbulow impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT amylangdon impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT tiffanyhink impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT meghanwallace impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT kimberlyareske impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT sanketpatel impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT xiaoqingsun impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT sondraseiler impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT susanjones impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT jenniehkwon impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT careyanndburnham impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT gautamdantas impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential AT erikrdubberke impactofamoxicillinclavulanatefollowedbyautologousfecalmicrobiotatransplantationonfecalmicrobiomestructureandmetabolicpotential |
_version_ |
1716691960044978176 |