Antimicrobial Activity of Single-Walled Carbon Nanotubes Suspended in Different Surfactants

We investigated the antibacterial activity of single-walled carbon nanotubes (SWCNTs) dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against...

Full description

Bibliographic Details
Main Authors: Lifeng Dong, Alex Henderson, Christopher Field
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2012/928924
Description
Summary:We investigated the antibacterial activity of single-walled carbon nanotubes (SWCNTs) dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against Salmonella enterica, Escherichia coli, and Enterococcus faecium and thereby was used to disperse bundled SWCNTs in order to study nanotube antibiotic activity. SWCNTs exhibited antibacterial characteristics for both S. enterica and E. coli. With the increase of nanotube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5 min to 2 h. Our findings indicate that carbon nanotubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display.
ISSN:1687-9503
1687-9511