Intra-Rater, Inter-Rater and Test-Retest Reliability of an Instrumented Timed Up and Go (iTUG) Test in Patients with Parkinson's Disease.

<h4>Background</h4>The "Timed Up and Go" (TUG) is a widely used measure of physical functioning in older people and in neurological populations, including Parkinson's Disease. When using an inertial sensor measurement system (instrumented TUG [iTUG]), the individual compon...

Full description

Bibliographic Details
Main Authors: Rob C van Lummel, Stefan Walgaard, Markus A Hobert, Walter Maetzler, Jaap H van Dieën, Francisca Galindo-Garre, Caroline B Terwee
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0151881
Description
Summary:<h4>Background</h4>The "Timed Up and Go" (TUG) is a widely used measure of physical functioning in older people and in neurological populations, including Parkinson's Disease. When using an inertial sensor measurement system (instrumented TUG [iTUG]), the individual components of the iTUG and the trunk kinematics can be measured separately, which may provide relevant additional information.<h4>Objective</h4>The aim of this study was to determine intra-rater, inter-rater and test-retest reliability of the iTUG in patients with Parkinson's Disease.<h4>Methods</h4>Twenty eight PD patients, aged 50 years or older, were included. For the iTUG the DynaPort Hybrid (McRoberts, The Hague, The Netherlands) was worn at the lower back. The device measured acceleration and angular velocity in three directions at a rate of 100 samples/s. Patients performed the iTUG five times on two consecutive days. Repeated measurements by the same rater on the same day were used to calculate intra-rater reliability. Repeated measurements by different raters on the same day were used to calculate intra-rater and inter-rater reliability. Repeated measurements by the same rater on different days were used to calculate test-retest reliability.<h4>Results</h4>Nineteen ICC values (15%) were ≥ 0.9 which is considered as excellent reliability. Sixty four ICC values (49%) were ≥ 0.70 and < 0.90 which is considered as good reliability. Thirty one ICC values (24%) were ≥ 0.50 and < 0.70, indicating moderate reliability. Sixteen ICC values (12%) were ≥ 0.30 and < 0.50 indicating poor reliability. Two ICT values (2%) were < 0.30 indicating very poor reliability.<h4>Conclusions</h4>In conclusion, in patients with Parkinson's disease the intra-rater, inter-rater, and test-retest reliability of the individual components of the instrumented TUG (iTUG) was excellent to good for total duration and for turning durations, and good to low for the sub durations and for the kinematics of the SiSt and StSi. The results of this fully automated analysis of instrumented TUG movements demonstrate that several reliable TUG parameters can be identified that provide a basis for a more precise, quantitative use of the TUG test, in clinical practice.
ISSN:1932-6203