15-deoxy-Δ12,14-prostaglandin J2 inhibits the expression of microsomal prostaglandin E synthase type 2 in colon cancer cells

Prostaglandin (PG) E2 (PGE2) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE2 is accomplished by conversion of the cyclooxygenase (COX) product PGH2 by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (m...

Full description

Bibliographic Details
Main Authors: Oliver Schroäder, Yulyana Yudina, Alan Sabirsh, Nadine Zahn, Jesper Z. Haeggstroäm, Juärgen Stein
Format: Article
Language:English
Published: Elsevier 2006-05-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520332569
Description
Summary:Prostaglandin (PG) E2 (PGE2) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE2 is accomplished by conversion of the cyclooxygenase (COX) product PGH2 by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Δ12,14-PGJ2 and PGA2 downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor γ or PGD2 receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE2. Our data suggest that there is a feedback mechanism between PGE2 and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.
ISSN:0022-2275