Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers

Nanocarbon materials present sp<sup>2</sup>-carbon domains skilled for electrochemical energy conversion or storage applications. In this work, we investigate graphene oxide nanofibers (GONFs) as a recent interesting carbon material class. This material combines the filamentous morpholog...

Full description

Bibliographic Details
Main Authors: Daniel Torres, Sara Pérez-Rodríguez, David Sebastián, José Luis Pinilla, María Jesús Lázaro, Isabel Suelves
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/6/1056
id doaj-019ad9f9e5984699a5ee75aa9e6bee0c
record_format Article
spelling doaj-019ad9f9e5984699a5ee75aa9e6bee0c2020-11-25T02:36:39ZengMDPI AGNanomaterials2079-49912020-05-01101056105610.3390/nano10061056Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide NanofibersDaniel Torres0Sara Pérez-Rodríguez1David Sebastián2José Luis Pinilla3María Jesús Lázaro4Isabel Suelves5Instituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, SpainInstituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, SpainInstituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, SpainInstituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, SpainInstituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, SpainInstituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, SpainNanocarbon materials present sp<sup>2</sup>-carbon domains skilled for electrochemical energy conversion or storage applications. In this work, we investigate graphene oxide nanofibers (GONFs) as a recent interesting carbon material class. This material combines the filamentous morphology of the starting carbon nanofibers (CNFs) and the interlayer spacing of graphene oxide, and exhibits a domain arrangement accessible for fast transport of electrons and ions. Reduced GONFs (RGONFs) present the partial removal of basal functional groups, resulting in higher mesoporosity, turbostratic stacking, and surface chemistry less restrictive for transport phenomena. Besides, the filament morphology minimizes the severe layer restacking shown in the reduction of conventional graphene oxide sheets. The influence of the reduction temperature (140–220 °C) on the electrochemical behaviour in aqueous 0.5 M H<sub>2</sub>SO<sub>4</sub> of RGONFs is reported. RGONFs present an improved capacitance up to 16 times higher than GONFs, ascribed to the unique structure of RGONFs containing accessible turbostratic domains and restored electronic conductivity. Hydrothermal reduction at 140 °C results in the highest capacitance as evidenced by cyclic voltammetry and electrochemical impedance spectroscopy measurements (up to 137 F·g<sup>−1</sup>). Higher temperatures lead to the removal of sulphur groups and slightly thicker graphite domains, and consequently a decrease of the capacitance.https://www.mdpi.com/2079-4991/10/6/1056carbon nanofibersreduced graphene oxide nanofibershydrothermal reductioncapacitance
collection DOAJ
language English
format Article
sources DOAJ
author Daniel Torres
Sara Pérez-Rodríguez
David Sebastián
José Luis Pinilla
María Jesús Lázaro
Isabel Suelves
spellingShingle Daniel Torres
Sara Pérez-Rodríguez
David Sebastián
José Luis Pinilla
María Jesús Lázaro
Isabel Suelves
Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers
Nanomaterials
carbon nanofibers
reduced graphene oxide nanofibers
hydrothermal reduction
capacitance
author_facet Daniel Torres
Sara Pérez-Rodríguez
David Sebastián
José Luis Pinilla
María Jesús Lázaro
Isabel Suelves
author_sort Daniel Torres
title Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers
title_short Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers
title_full Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers
title_fullStr Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers
title_full_unstemmed Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers
title_sort capacitance enhancement of hydrothermally reduced graphene oxide nanofibers
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2020-05-01
description Nanocarbon materials present sp<sup>2</sup>-carbon domains skilled for electrochemical energy conversion or storage applications. In this work, we investigate graphene oxide nanofibers (GONFs) as a recent interesting carbon material class. This material combines the filamentous morphology of the starting carbon nanofibers (CNFs) and the interlayer spacing of graphene oxide, and exhibits a domain arrangement accessible for fast transport of electrons and ions. Reduced GONFs (RGONFs) present the partial removal of basal functional groups, resulting in higher mesoporosity, turbostratic stacking, and surface chemistry less restrictive for transport phenomena. Besides, the filament morphology minimizes the severe layer restacking shown in the reduction of conventional graphene oxide sheets. The influence of the reduction temperature (140–220 °C) on the electrochemical behaviour in aqueous 0.5 M H<sub>2</sub>SO<sub>4</sub> of RGONFs is reported. RGONFs present an improved capacitance up to 16 times higher than GONFs, ascribed to the unique structure of RGONFs containing accessible turbostratic domains and restored electronic conductivity. Hydrothermal reduction at 140 °C results in the highest capacitance as evidenced by cyclic voltammetry and electrochemical impedance spectroscopy measurements (up to 137 F·g<sup>−1</sup>). Higher temperatures lead to the removal of sulphur groups and slightly thicker graphite domains, and consequently a decrease of the capacitance.
topic carbon nanofibers
reduced graphene oxide nanofibers
hydrothermal reduction
capacitance
url https://www.mdpi.com/2079-4991/10/6/1056
work_keys_str_mv AT danieltorres capacitanceenhancementofhydrothermallyreducedgrapheneoxidenanofibers
AT saraperezrodriguez capacitanceenhancementofhydrothermallyreducedgrapheneoxidenanofibers
AT davidsebastian capacitanceenhancementofhydrothermallyreducedgrapheneoxidenanofibers
AT joseluispinilla capacitanceenhancementofhydrothermallyreducedgrapheneoxidenanofibers
AT mariajesuslazaro capacitanceenhancementofhydrothermallyreducedgrapheneoxidenanofibers
AT isabelsuelves capacitanceenhancementofhydrothermallyreducedgrapheneoxidenanofibers
_version_ 1724798867222822912