Veratridine increases the survival of retinal ganglion cells in vitro

Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death...

Full description

Bibliographic Details
Main Authors: S.P.F. Pereira, E.G. Araujo
Format: Article
Language:English
Published: Associação Brasileira de Divulgação Científica 1997-12-01
Series:Brazilian Journal of Medical and Biological Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1997001200014
Description
Summary:Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM) on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM), a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker) and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker). These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro
ISSN:0100-879X
1414-431X