Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory

Abstract Starting from N = 4 $$ \mathcal{N}=4 $$ SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field t...

Full description

Bibliographic Details
Main Authors: J. Alvarez-Jimenez, I. Cortese, J. Antonio García, D. Gutiérrez-Ruiz, J. David Vergara
Format: Article
Language:English
Published: SpringerOpen 2018-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2018)153
id doaj-028dab73f5d14fbb8fdcaa9f52400583
record_format Article
spelling doaj-028dab73f5d14fbb8fdcaa9f524005832020-11-25T00:57:18ZengSpringerOpenJournal of High Energy Physics1029-84792018-10-0120181011710.1007/JHEP10(2018)153Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theoryJ. Alvarez-Jimenez0I. Cortese1J. Antonio García2D. Gutiérrez-Ruiz3J. David Vergara4Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoAbstract Starting from N = 4 $$ \mathcal{N}=4 $$ SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field theory can also be obtained from a relativistic particle Lagrangian with a proper implementation of the non-minimal coupling. We provide the generalization of the non-relativistic construction of the Runge-Lenz vector to the relativistic case and show explicitly that this new vector generates the SO(4) algebra. Using the power of the SO(4) symmetry, we calculate the relativistic hydrogen atom spectrum. We provide a generalization of the Kustaanheimo-Stiefel transformation to the relativistic case and relate our results with the corresponding relativistic oscillator. Finally, in the light of these results, we reconsider the calculation of the hydrogen atom spectrum from the cusp anomalous dimension given in [2].http://link.springer.com/article/10.1007/JHEP10(2018)153Duality in Gauge Field TheoriesGlobal SymmetriesSpontaneous Symmetry Breaking
collection DOAJ
language English
format Article
sources DOAJ
author J. Alvarez-Jimenez
I. Cortese
J. Antonio García
D. Gutiérrez-Ruiz
J. David Vergara
spellingShingle J. Alvarez-Jimenez
I. Cortese
J. Antonio García
D. Gutiérrez-Ruiz
J. David Vergara
Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
Journal of High Energy Physics
Duality in Gauge Field Theories
Global Symmetries
Spontaneous Symmetry Breaking
author_facet J. Alvarez-Jimenez
I. Cortese
J. Antonio García
D. Gutiérrez-Ruiz
J. David Vergara
author_sort J. Alvarez-Jimenez
title Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
title_short Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
title_full Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
title_fullStr Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
title_full_unstemmed Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
title_sort relativistic runge-lenz vector: from n = 4 $$ \mathcal{n}=4 $$ sym to so(4) scalar field theory
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2018-10-01
description Abstract Starting from N = 4 $$ \mathcal{N}=4 $$ SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field theory can also be obtained from a relativistic particle Lagrangian with a proper implementation of the non-minimal coupling. We provide the generalization of the non-relativistic construction of the Runge-Lenz vector to the relativistic case and show explicitly that this new vector generates the SO(4) algebra. Using the power of the SO(4) symmetry, we calculate the relativistic hydrogen atom spectrum. We provide a generalization of the Kustaanheimo-Stiefel transformation to the relativistic case and relate our results with the corresponding relativistic oscillator. Finally, in the light of these results, we reconsider the calculation of the hydrogen atom spectrum from the cusp anomalous dimension given in [2].
topic Duality in Gauge Field Theories
Global Symmetries
Spontaneous Symmetry Breaking
url http://link.springer.com/article/10.1007/JHEP10(2018)153
work_keys_str_mv AT jalvarezjimenez relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory
AT icortese relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory
AT jantoniogarcia relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory
AT dgutierrezruiz relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory
AT jdavidvergara relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory
_version_ 1725224760012439552