Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory
Abstract Starting from N = 4 $$ \mathcal{N}=4 $$ SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field t...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2018)153 |
id |
doaj-028dab73f5d14fbb8fdcaa9f52400583 |
---|---|
record_format |
Article |
spelling |
doaj-028dab73f5d14fbb8fdcaa9f524005832020-11-25T00:57:18ZengSpringerOpenJournal of High Energy Physics1029-84792018-10-0120181011710.1007/JHEP10(2018)153Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theoryJ. Alvarez-Jimenez0I. Cortese1J. Antonio García2D. Gutiérrez-Ruiz3J. David Vergara4Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoDepartamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoAbstract Starting from N = 4 $$ \mathcal{N}=4 $$ SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field theory can also be obtained from a relativistic particle Lagrangian with a proper implementation of the non-minimal coupling. We provide the generalization of the non-relativistic construction of the Runge-Lenz vector to the relativistic case and show explicitly that this new vector generates the SO(4) algebra. Using the power of the SO(4) symmetry, we calculate the relativistic hydrogen atom spectrum. We provide a generalization of the Kustaanheimo-Stiefel transformation to the relativistic case and relate our results with the corresponding relativistic oscillator. Finally, in the light of these results, we reconsider the calculation of the hydrogen atom spectrum from the cusp anomalous dimension given in [2].http://link.springer.com/article/10.1007/JHEP10(2018)153Duality in Gauge Field TheoriesGlobal SymmetriesSpontaneous Symmetry Breaking |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Alvarez-Jimenez I. Cortese J. Antonio García D. Gutiérrez-Ruiz J. David Vergara |
spellingShingle |
J. Alvarez-Jimenez I. Cortese J. Antonio García D. Gutiérrez-Ruiz J. David Vergara Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory Journal of High Energy Physics Duality in Gauge Field Theories Global Symmetries Spontaneous Symmetry Breaking |
author_facet |
J. Alvarez-Jimenez I. Cortese J. Antonio García D. Gutiérrez-Ruiz J. David Vergara |
author_sort |
J. Alvarez-Jimenez |
title |
Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory |
title_short |
Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory |
title_full |
Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory |
title_fullStr |
Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory |
title_full_unstemmed |
Relativistic Runge-Lenz vector: from N = 4 $$ \mathcal{N}=4 $$ SYM to SO(4) scalar field theory |
title_sort |
relativistic runge-lenz vector: from n = 4 $$ \mathcal{n}=4 $$ sym to so(4) scalar field theory |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2018-10-01 |
description |
Abstract Starting from N = 4 $$ \mathcal{N}=4 $$ SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field theory can also be obtained from a relativistic particle Lagrangian with a proper implementation of the non-minimal coupling. We provide the generalization of the non-relativistic construction of the Runge-Lenz vector to the relativistic case and show explicitly that this new vector generates the SO(4) algebra. Using the power of the SO(4) symmetry, we calculate the relativistic hydrogen atom spectrum. We provide a generalization of the Kustaanheimo-Stiefel transformation to the relativistic case and relate our results with the corresponding relativistic oscillator. Finally, in the light of these results, we reconsider the calculation of the hydrogen atom spectrum from the cusp anomalous dimension given in [2]. |
topic |
Duality in Gauge Field Theories Global Symmetries Spontaneous Symmetry Breaking |
url |
http://link.springer.com/article/10.1007/JHEP10(2018)153 |
work_keys_str_mv |
AT jalvarezjimenez relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory AT icortese relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory AT jantoniogarcia relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory AT dgutierrezruiz relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory AT jdavidvergara relativisticrungelenzvectorfromn4mathcaln4symtoso4scalarfieldtheory |
_version_ |
1725224760012439552 |