Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level

Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥&...

Full description

Bibliographic Details
Main Authors: Vladimir Kanovei, Vassily Lyubetsky
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/6/910
id doaj-0318f32a83044826a9033b1f8fc334b7
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Vladimir Kanovei
Vassily Lyubetsky
spellingShingle Vladimir Kanovei
Vassily Lyubetsky
Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
Mathematics
definability
nonconstructible reals
projective hierarchy
generic models
almost disjoint forcing
author_facet Vladimir Kanovei
Vassily Lyubetsky
author_sort Vladimir Kanovei
title Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
title_short Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
title_full Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
title_fullStr Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
title_full_unstemmed Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
title_sort models of set theory in which nonconstructible reals first appear at a given projective level
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-06-01
description Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. Then: 1. If it holds in the constructible universe <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, then there is a generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∈</mo> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> but still <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, and moreover, any set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>∈</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, is constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. 2. There exists a generic extension <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which it is true that there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and even <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, and in addition, <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">V</mi> <mo>=</mo> <mi mathvariant="bold">L</mi> <mo>[</mo> <mi>a</mi> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> in the extension. 3. There exists an generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. Thus, nonconstructible reals (here subsets of <inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>) can first appear at a given lightface projective class strictly higher than <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula>, in an appropriate generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. The lower limit <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> is motivated by the Shoenfield absoluteness theorem, which implies that all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, which are very similar at a given projective level <i>n</i> but discernible at the next level <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>.
topic definability
nonconstructible reals
projective hierarchy
generic models
almost disjoint forcing
url https://www.mdpi.com/2227-7390/8/6/910
work_keys_str_mv AT vladimirkanovei modelsofsettheoryinwhichnonconstructiblerealsfirstappearatagivenprojectivelevel
AT vassilylyubetsky modelsofsettheoryinwhichnonconstructiblerealsfirstappearatagivenprojectivelevel
_version_ 1724574191546531840
spelling doaj-0318f32a83044826a9033b1f8fc334b72020-11-25T03:31:01ZengMDPI AGMathematics2227-73902020-06-01891091010.3390/math8060910Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective LevelVladimir Kanovei0Vassily Lyubetsky1Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, RussiaInstitute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, RussiaModels of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. Then: 1. If it holds in the constructible universe <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, then there is a generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∈</mo> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> but still <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, and moreover, any set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>∈</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, is constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. 2. There exists a generic extension <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which it is true that there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and even <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, and in addition, <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">V</mi> <mo>=</mo> <mi mathvariant="bold">L</mi> <mo>[</mo> <mi>a</mi> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> in the extension. 3. There exists an generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. Thus, nonconstructible reals (here subsets of <inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>) can first appear at a given lightface projective class strictly higher than <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula>, in an appropriate generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. The lower limit <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> is motivated by the Shoenfield absoluteness theorem, which implies that all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, which are very similar at a given projective level <i>n</i> but discernible at the next level <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/8/6/910definabilitynonconstructible realsprojective hierarchygeneric modelsalmost disjoint forcing