Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level
Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/6/910 |
id |
doaj-0318f32a83044826a9033b1f8fc334b7 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vladimir Kanovei Vassily Lyubetsky |
spellingShingle |
Vladimir Kanovei Vassily Lyubetsky Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level Mathematics definability nonconstructible reals projective hierarchy generic models almost disjoint forcing |
author_facet |
Vladimir Kanovei Vassily Lyubetsky |
author_sort |
Vladimir Kanovei |
title |
Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level |
title_short |
Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level |
title_full |
Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level |
title_fullStr |
Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level |
title_full_unstemmed |
Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level |
title_sort |
models of set theory in which nonconstructible reals first appear at a given projective level |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-06-01 |
description |
Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. Then: 1. If it holds in the constructible universe <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, then there is a generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∈</mo> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> but still <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, and moreover, any set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>∈</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, is constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. 2. There exists a generic extension <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which it is true that there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and even <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, and in addition, <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">V</mi> <mo>=</mo> <mi mathvariant="bold">L</mi> <mo>[</mo> <mi>a</mi> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> in the extension. 3. There exists an generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. Thus, nonconstructible reals (here subsets of <inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>) can first appear at a given lightface projective class strictly higher than <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula>, in an appropriate generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. The lower limit <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> is motivated by the Shoenfield absoluteness theorem, which implies that all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, which are very similar at a given projective level <i>n</i> but discernible at the next level <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. |
topic |
definability nonconstructible reals projective hierarchy generic models almost disjoint forcing |
url |
https://www.mdpi.com/2227-7390/8/6/910 |
work_keys_str_mv |
AT vladimirkanovei modelsofsettheoryinwhichnonconstructiblerealsfirstappearatagivenprojectivelevel AT vassilylyubetsky modelsofsettheoryinwhichnonconstructiblerealsfirstappearatagivenprojectivelevel |
_version_ |
1724574191546531840 |
spelling |
doaj-0318f32a83044826a9033b1f8fc334b72020-11-25T03:31:01ZengMDPI AGMathematics2227-73902020-06-01891091010.3390/math8060910Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective LevelVladimir Kanovei0Vassily Lyubetsky1Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, RussiaInstitute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, RussiaModels of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. Then: 1. If it holds in the constructible universe <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, then there is a generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∈</mo> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> but still <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>∉</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> <mo>∪</mo> <msubsup> <mi>Π</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, and moreover, any set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>∈</mo> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, is constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. 2. There exists a generic extension <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which it is true that there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and even <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mi>n</mi> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, and in addition, <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">V</mi> <mo>=</mo> <mi mathvariant="bold">L</mi> <mo>[</mo> <mi>a</mi> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> in the extension. 3. There exists an generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula> in which there is a nonconstructible <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula>, but all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Δ</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. Thus, nonconstructible reals (here subsets of <inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>) can first appear at a given lightface projective class strictly higher than <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula>, in an appropriate generic extension of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>. The lower limit <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> is motivated by the Shoenfield absoluteness theorem, which implies that all <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>Σ</mi> <mn>2</mn> <mn>1</mn> </msubsup> </semantics> </math> </inline-formula> sets <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>⊆</mo> <mi>ω</mi> </mrow> </semantics> </math> </inline-formula> are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">L</mi> </semantics> </math> </inline-formula>, which are very similar at a given projective level <i>n</i> but discernible at the next level <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/8/6/910definabilitynonconstructible realsprojective hierarchygeneric modelsalmost disjoint forcing |