Theoretical Predictions of the Structural and Mechanical Properties of Tungsten–Rare Earth Element Alloys

Tungsten (W) is considered as the potential plasma facing material of the divertor and the first wall material in fusion. To further improve the ductility of W, the structural and mechanical properties of W–M (M = rare earth element Y, La, Ce and Lu) alloys are systematically investigated by first-p...

Full description

Bibliographic Details
Main Authors: Mingyu Wu, Zhihang Wang, Ningning Zhang, Changchun Ge, Yujuan Zhang
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/11/3046
Description
Summary:Tungsten (W) is considered as the potential plasma facing material of the divertor and the first wall material in fusion. To further improve the ductility of W, the structural and mechanical properties of W–M (M = rare earth element Y, La, Ce and Lu) alloys are systematically investigated by first-principles calculations. Our results reveal that all the W<sub>1<i>−x</i></sub>M<i><sub>x</sub></i> (<i>x</i> = 0.0625, 0.125, 0.1875, 0.25) alloys can form binary solid solution at the atomic level, and the alloys keep bcc lattice structures until the concentration of M increases to a certain value. Although the moduli of the alloys are reduced compared to that of pure W metal, the characteristic <i>B/G</i> ratio and Poisson’s ratio significantly increase, implying all the four rare earth elements can efficiently improve the ductility of W metal. Considering both factors of mechanical strength and ductility, La and Ce are better alloying elements than Y and Lu.
ISSN:1996-1944