Summary: | In order to check the reliability of an NMR-based metabolomic approach to evaluating blend composition (and declaration), a series of 81 Italian/Tunisian blends samples at different percentage composition (from 10/90 to 90/10% Coratina/Tunisian oil by 10% increase step) were prepared starting from five Coratina (Apulia) and five Tunisian extra virgin olive oil (EVOO) batches. Moreover, a series of nine binary mixtures blend oils were obtained, starting from the two batches’ oil sums. The models built showed the linear relationship between the NMR signals and the percentage composition of the blends. In particular, a high correlation with the percentage composition of blends was obtained from the partial least squares (PLS) regression model, when the two batches oil sums were used for the binary mixtures of blend samples. These proposed methods suggest that a multivariate analysis (MVA)-based NMR approach—in particular PLS regression (PLSR)—could be a very useful tool (including for trading purposes) to assess quantitative blend composition. This is important for the sustainability of the goods’ free movement, especially in the agrifood sector. This cornerstone policy of current common markets is also clearly linked to the availability of methods for certifying the origin of the foodstuffs and their use in the assembly of final product for the consumer.
|