Non-Contact Monitoring on the Flow Status inside a Pulsating Heat Pipe

The paper presents a concept of thermal-to-electrical energy conversion by using the oscillatory motion of magnetic fluid slugs which has potential to be applied in the field of sensors. A pulsating heat pipe (PHP) is introduced to produce vapor-magnetic fluid plug–slug flow in a snake-shaped capill...

Full description

Bibliographic Details
Main Authors: Yang Chen, Yongqing He, Xiaoqin Zhu
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/20/5955
Description
Summary:The paper presents a concept of thermal-to-electrical energy conversion by using the oscillatory motion of magnetic fluid slugs which has potential to be applied in the field of sensors. A pulsating heat pipe (PHP) is introduced to produce vapor-magnetic fluid plug–slug flow in a snake-shaped capillary tube. As the magnetic fluid is magnetized by the permanent magnet, the slugs of magnetic fluid passing through the copper coils make the magnetic flux vary and produce the electromotive force. The peak values of induced voltage observed in our tests are from 0.1 mV to 4.4 mV. The effects of the slug velocity, heat input and magnetic particle volume concentration on the electromotive force are discussed. Furthermore, a theoretical model considering the fluid velocity of the working fluid, the inner radius of the PHP and the contact angle between the working fluid and the pipe wall is established. At the same time, the theoretical and experimental results are compared, and the influences of tube inner radius, working fluid velocity and contact angle on the induced electromotive force are analyzed.
ISSN:1424-8220