Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

<p>Abstract</p> <p>Background</p> <p>Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC...

Full description

Bibliographic Details
Main Authors: Chen Jie, Shi Dehuan, Liu Xiaoyan, Fang Shuang, Zhang Jie, Zhao Yueran
Format: Article
Language:English
Published: BMC 2012-10-01
Series:BMC Cancer
Subjects:
Online Access:http://www.biomedcentral.com/1471-2407/12/464
id doaj-0430022287214fc4a9b1f81dfbec998b
record_format Article
spelling doaj-0430022287214fc4a9b1f81dfbec998b2020-11-25T00:33:28ZengBMCBMC Cancer1471-24072012-10-0112146410.1186/1471-2407-12-464Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasisChen JieShi DehuanLiu XiaoyanFang ShuangZhang JieZhao Yueran<p>Abstract</p> <p>Background</p> <p>Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis.</p> <p>Methods</p> <p>In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched.</p> <p>Results</p> <p>SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression.</p> <p>Conclusion</p> <p>SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.</p> http://www.biomedcentral.com/1471-2407/12/464SPARCCervical cancerProliferationApoptosisMetastasis
collection DOAJ
language English
format Article
sources DOAJ
author Chen Jie
Shi Dehuan
Liu Xiaoyan
Fang Shuang
Zhang Jie
Zhao Yueran
spellingShingle Chen Jie
Shi Dehuan
Liu Xiaoyan
Fang Shuang
Zhang Jie
Zhao Yueran
Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis
BMC Cancer
SPARC
Cervical cancer
Proliferation
Apoptosis
Metastasis
author_facet Chen Jie
Shi Dehuan
Liu Xiaoyan
Fang Shuang
Zhang Jie
Zhao Yueran
author_sort Chen Jie
title Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis
title_short Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis
title_full Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis
title_fullStr Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis
title_full_unstemmed Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis
title_sort targeting sparc by lentivirus-mediated rna interference inhibits cervical cancer cell growth and metastasis
publisher BMC
series BMC Cancer
issn 1471-2407
publishDate 2012-10-01
description <p>Abstract</p> <p>Background</p> <p>Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis.</p> <p>Methods</p> <p>In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched.</p> <p>Results</p> <p>SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression.</p> <p>Conclusion</p> <p>SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.</p>
topic SPARC
Cervical cancer
Proliferation
Apoptosis
Metastasis
url http://www.biomedcentral.com/1471-2407/12/464
work_keys_str_mv AT chenjie targetingsparcbylentivirusmediatedrnainterferenceinhibitscervicalcancercellgrowthandmetastasis
AT shidehuan targetingsparcbylentivirusmediatedrnainterferenceinhibitscervicalcancercellgrowthandmetastasis
AT liuxiaoyan targetingsparcbylentivirusmediatedrnainterferenceinhibitscervicalcancercellgrowthandmetastasis
AT fangshuang targetingsparcbylentivirusmediatedrnainterferenceinhibitscervicalcancercellgrowthandmetastasis
AT zhangjie targetingsparcbylentivirusmediatedrnainterferenceinhibitscervicalcancercellgrowthandmetastasis
AT zhaoyueran targetingsparcbylentivirusmediatedrnainterferenceinhibitscervicalcancercellgrowthandmetastasis
_version_ 1725316610639527936