On a fractional hybrid version of the Sturm–Liouville equation

Abstract It is well known that the Sturm–Liouville equation has many applications in different areas of science. Thus, it is important to review different versions of the well-known equation. The technique of α-admissible α-ψ-contractions was introduced by Samet et al. in (Nonlinear Anal. 75:2154–21...

Full description

Bibliographic Details
Main Authors: Zohreh Zeinalabedini Charandabi, Shahram Rezapour, Mina Ettefagh
Format: Article
Language:English
Published: SpringerOpen 2020-06-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-02765-z
Description
Summary:Abstract It is well known that the Sturm–Liouville equation has many applications in different areas of science. Thus, it is important to review different versions of the well-known equation. The technique of α-admissible α-ψ-contractions was introduced by Samet et al. in (Nonlinear Anal. 75:2154–2165, 2012). Our aim in this work is to study a fractional hybrid version of the Sturm–Liouville equation by mixing the technique of Samet. In fact, by using the technique of α-admissible α-ψ-contractions, we investigate the existence of solutions for the fractional hybrid Sturm–Liouville equation by using the multi-point boundary value conditions. Also, we review the existence of solutions for a fractional hybrid version of the problem under the integral boundary value conditions. Finally, we provide two examples to illustrate our main results.
ISSN:1687-1847