Controlling the electronic and physical coupling on dielectric thin films

Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change th...

Full description

Bibliographic Details
Main Authors: Philipp Hurdax, Michael Hollerer, Larissa Egger, Georg Koller, Xiaosheng Yang, Anja Haags, Serguei Soubatch, Frank Stefan Tautz, Mathias Richter, Alexander Gottwald, Peter Puschnig, Martin Sterrer, Michael G. Ramsey
Format: Article
Language:English
Published: Beilstein-Institut 2020-10-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.11.132
id doaj-04a66bf8cce843d8b8bdd728d42b6562
record_format Article
spelling doaj-04a66bf8cce843d8b8bdd728d42b65622020-11-25T03:40:32ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862020-10-011111492150310.3762/bjnano.11.1322190-4286-11-132Controlling the electronic and physical coupling on dielectric thin filmsPhilipp Hurdax0Michael Hollerer1Larissa Egger2Georg Koller3Xiaosheng Yang4Anja Haags5Serguei Soubatch6Frank Stefan Tautz7Mathias Richter8Alexander Gottwald9Peter Puschnig10Martin Sterrer11Michael G. Ramsey12Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaInstitute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaInstitute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaInstitute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaPeter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, GermanyPeter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, GermanyPeter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, GermanyPeter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, GermanyPhysikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, GermanyPhysikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, GermanyInstitute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaInstitute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaInstitute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, AustriaUltrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.https://doi.org/10.3762/bjnano.11.132decouplinginteger charge transferorganic filmspara-sexiphenylthin dielectric film
collection DOAJ
language English
format Article
sources DOAJ
author Philipp Hurdax
Michael Hollerer
Larissa Egger
Georg Koller
Xiaosheng Yang
Anja Haags
Serguei Soubatch
Frank Stefan Tautz
Mathias Richter
Alexander Gottwald
Peter Puschnig
Martin Sterrer
Michael G. Ramsey
spellingShingle Philipp Hurdax
Michael Hollerer
Larissa Egger
Georg Koller
Xiaosheng Yang
Anja Haags
Serguei Soubatch
Frank Stefan Tautz
Mathias Richter
Alexander Gottwald
Peter Puschnig
Martin Sterrer
Michael G. Ramsey
Controlling the electronic and physical coupling on dielectric thin films
Beilstein Journal of Nanotechnology
decoupling
integer charge transfer
organic films
para-sexiphenyl
thin dielectric film
author_facet Philipp Hurdax
Michael Hollerer
Larissa Egger
Georg Koller
Xiaosheng Yang
Anja Haags
Serguei Soubatch
Frank Stefan Tautz
Mathias Richter
Alexander Gottwald
Peter Puschnig
Martin Sterrer
Michael G. Ramsey
author_sort Philipp Hurdax
title Controlling the electronic and physical coupling on dielectric thin films
title_short Controlling the electronic and physical coupling on dielectric thin films
title_full Controlling the electronic and physical coupling on dielectric thin films
title_fullStr Controlling the electronic and physical coupling on dielectric thin films
title_full_unstemmed Controlling the electronic and physical coupling on dielectric thin films
title_sort controlling the electronic and physical coupling on dielectric thin films
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2020-10-01
description Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.
topic decoupling
integer charge transfer
organic films
para-sexiphenyl
thin dielectric film
url https://doi.org/10.3762/bjnano.11.132
work_keys_str_mv AT philipphurdax controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT michaelhollerer controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT larissaegger controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT georgkoller controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT xiaoshengyang controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT anjahaags controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT sergueisoubatch controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT frankstefantautz controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT mathiasrichter controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT alexandergottwald controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT peterpuschnig controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT martinsterrer controllingtheelectronicandphysicalcouplingondielectricthinfilms
AT michaelgramsey controllingtheelectronicandphysicalcouplingondielectricthinfilms
_version_ 1724534208096894976