Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait

This study presents the first accuracy assessment of a low cost small unmanned aerial vehicle (sUAV) in reconstructing three dimensional (3D) models of traffic accidents at extreme operating environments. To date, previous studies have focused on the feasibility of adopting sUAVs in traffic accident...

Full description

Bibliographic Details
Main Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Abdullah K. Alshatti
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Information
Subjects:
UAV
Online Access:https://www.mdpi.com/2078-2489/11/9/442
Description
Summary:This study presents the first accuracy assessment of a low cost small unmanned aerial vehicle (sUAV) in reconstructing three dimensional (3D) models of traffic accidents at extreme operating environments. To date, previous studies have focused on the feasibility of adopting sUAVs in traffic accidents photogrammetry applications as well as the accuracy at normal operating conditions. In this study, 3D models of simulated accident scenes were reconstructed using a low-cost sUAV and cloud-based photogrammetry platform. Several experiments were carried out to evaluate the measurements accuracy at different flight altitudes during high temperature, low light, scattered rain and dusty high wind environments. Quantitative analyses are presented to highlight the precision range of the reconstructed traffic accident 3D model. Reported results range from highly accurate to fairly accurate represented by the root mean squared error (RMSE) range between 0.97 and 4.66 and a mean percentage absolute error (MAPE) between 1.03% and 20.2% at normal and extreme operating conditions, respectively. The findings offer an insight into the robustness and generalizability of UAV-based photogrammetry method for traffic accidents at extreme environments.
ISSN:2078-2489