Cardiovascular disease (CVD) and chronic kidney disease (CKD) event rates in HIV-positive persons at high predicted CVD and CKD risk: A prospective analysis of the D:A:D observational study.

The Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study has developed predictive risk scores for cardiovascular disease (CVD) and chronic kidney disease (CKD, defined as confirmed estimated glomerular filtration rate [eGFR] ≤ 60 ml/min/1.73 m2) events in HIV-positive people. We hypothe...

Full description

Bibliographic Details
Main Authors: Mark A Boyd, Amanda Mocroft, Lene Ryom, Antonella d'Arminio Monforte, Caroline Sabin, Wafaa M El-Sadr, Camilla Ingrid Hatleberg, Stephane De Wit, Rainer Weber, Eric Fontas, Andrew Phillips, Fabrice Bonnet, Peter Reiss, Jens Lundgren, Matthew Law
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-11-01
Series:PLoS Medicine
Online Access:http://europepmc.org/articles/PMC5675358?pdf=render
Description
Summary:The Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study has developed predictive risk scores for cardiovascular disease (CVD) and chronic kidney disease (CKD, defined as confirmed estimated glomerular filtration rate [eGFR] ≤ 60 ml/min/1.73 m2) events in HIV-positive people. We hypothesized that participants in D:A:D at high (>5%) predicted risk for both CVD and CKD would be at even greater risk for CVD and CKD events.We included all participants with complete risk factor (covariate) data, baseline eGFR > 60 ml/min/1.73 m2, and a confirmed (>3 months apart) eGFR < 60 ml/min/1.73 m2 thereafter to calculate CVD and CKD risk scores. We calculated CVD and CKD event rates by predicted 5-year CVD and CKD risk groups (≤1%, >1%-5%, >5%) and fitted Poisson models to assess whether CVD and CKD risk group effects were multiplicative. A total of 27,215 participants contributed 202,034 person-years of follow-up: 74% male, median (IQR) age 42 (36, 49) years, median (IQR) baseline year of follow-up 2005 (2004, 2008). D:A:D risk equations predicted 3,560 (13.1%) participants at high CVD risk, 4,996 (18.4%) participants at high CKD risk, and 1,585 (5.8%) participants at both high CKD and high CVD risk. CVD and CKD event rates by predicted risk group were multiplicative. Participants at high CVD risk had a 5.63-fold (95% CI 4.47, 7.09, p < 0.001) increase in CKD events compared to those at low risk; participants at high CKD risk had a 1.31-fold (95% CI 1.09, 1.56, p = 0.005) increase in CVD events compared to those at low risk. Participants' CVD and CKD risk groups had multiplicative predictive effects, with no evidence of an interaction (p = 0.329 and p = 0.291 for CKD and CVD, respectively). The main study limitation is the difference in the ascertainment of the clinically defined CVD endpoints and the laboratory-defined CKD endpoints.We found that people at high predicted risk for both CVD and CKD have substantially greater risks for both CVD and CKD events compared with those at low predicted risk for both outcomes, and compared to those at high predicted risk for only CVD or CKD events. This suggests that CVD and CKD risk in HIV-positive persons should be assessed together. The results further encourage clinicians to prioritise addressing modifiable risks for CVD and CKD in HIV-positive people.
ISSN:1549-1277
1549-1676