Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey

The Eastern Pontides (EP), which is the under transpressional deformation zone, is an active mountain belt that has been rising rapidly since the Cenozoic era because of the Arabian-Eurasian convergence. Morphometric studies have been performed to investigate the tectonic activity of this region and...

Full description

Bibliographic Details
Main Authors: Mustafa Softa, Tahir Emre, Hasan Sözbilir, Joel Q. G. Spencer, Mehmet Turan
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Geodinamica Acta
Subjects:
Online Access:http://dx.doi.org/10.1080/09853111.2018.1494776
Description
Summary:The Eastern Pontides (EP), which is the under transpressional deformation zone, is an active mountain belt that has been rising rapidly since the Cenozoic era because of the Arabian-Eurasian convergence. Morphometric studies have been performed to investigate the tectonic activity of this region and better understand the characteristics of the faults geomorphologically; the faults control the mountain fronts in the drainage basin of the EP. The results show the Hypsometric Curve (HC)-Hypsometric Integral (0.37-HI-0.67), Basin-Shaped Analysis (1.2-Bs-7), Valley-Floor-Width to Height-Ratio (0.4-Vf-1.2) and Asymmetry Factor (35-AF-81) applied to 46 drainage basins together with 9 tectonically controlled geomorphic indices (1.2-Smf-1.5) and a Stream Length Gradient (30-SL-120) indicate that the EP is tectonically active, and when the areas are evaluated according to Smf and Vf analyses, the tectonic level is relatively high. According to our conceptual model for the uplifting of the EP, with respect to field studies and morphometric analysis, (i) the EP is the active deformation zone and has a “push-up” geometry in conjunction with the North Anatolian Fault; (ii) the EP is progressively uplifting at a rate of more than 0.5 mm/yr in along with the thrust faults of the Black Sea Fault (BSF) and Borjomi-Kazbegi Fault (BKF).
ISSN:0985-3111
1778-3593