LncRNA MALAT1 promotes wound healing via regulating miR-141-3p/ZNF217 axis

Background: The process of wound healing is complex. Increasing evidences have shown that lncRNA MALAT1 is abundant in fibroblasts and may be engaged in wound healing process. Therefore, we explored the mechanism of MALAT1 affecting wound healing. Methods: The expression levels of MALAT1, miR-141-3p...

Full description

Bibliographic Details
Main Authors: Zun-Hong Liang, Yun-Chuan Pan, Shi-Shuai Lin, Zhi-Yang Qiu, Zhi Zhang
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Regenerative Therapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352320420300754
Description
Summary:Background: The process of wound healing is complex. Increasing evidences have shown that lncRNA MALAT1 is abundant in fibroblasts and may be engaged in wound healing process. Therefore, we explored the mechanism of MALAT1 affecting wound healing. Methods: The expression levels of MALAT1, miR-141-3p as well as ZNF217 in human fibroblast cells (HFF-1) were quantified by qRT-PCR. HFF-1 proliferation was measured by MTT, while migration was detected by wound healing assay. SMAD2 activation and matrix proteins expression were detected by western blotting. The interaction between miR-141-3p and MALAT1 or ZNF217 was further confirmed using the luciferase reporter gene assay. In vivo wound healing was assessed by full-thickness wound healing model on C57BL/6 mice. Result: Knockdown of MALAT1 as well as overexpression miR-141-3p remarkably inhibited the proliferation, migration and matrix protein expression in HFF-1 cells. MALAT1 directly targeted and inhibited the expression of miR-141-3p. MiR-141-3p suppressed the activation of TGF-β2/SMAD2 signaling pathway by targeting ZNF217. Knockdown of MALAT1 inhibited wound healing process in mice. Conclusions: MALAT1 up-regulates ZNF217 expression by targeting miR-141-3p, thus enhances the activity of TGF-β2/SMAD2 signaling pathway and promotes wound healing process. This investigation shed new light on the understanding of the role of MALAT1 in wound healing, and may provide potential target for the diagnosis or therapy of chronic wounds.
ISSN:2352-3204