Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation

The scan geometry of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, combined with the Earth's curvature, results in a pixel shape distortion known as the "bow-tie effect". Specifically, sensor pixels near the edge of the swath are elongated along-track and across-t...

Full description

Bibliographic Details
Main Authors: A. M. Sayer, N. C. Hsu, C. Bettenhausen
Format: Article
Language:English
Published: Copernicus Publications 2015-12-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/8/5277/2015/amt-8-5277-2015.pdf
id doaj-06bb7d80cb3c447fad8daa08ecc95d79
record_format Article
spelling doaj-06bb7d80cb3c447fad8daa08ecc95d792020-11-24T21:31:40ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482015-12-018125277528810.5194/amt-8-5277-2015Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigationA. M. Sayer0N. C. Hsu1C. Bettenhausen2NASA Goddard Space Flight Center, Greenbelt, Maryland, USANASA Goddard Space Flight Center, Greenbelt, Maryland, USANASA Goddard Space Flight Center, Greenbelt, Maryland, USAThe scan geometry of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, combined with the Earth's curvature, results in a pixel shape distortion known as the "bow-tie effect". Specifically, sensor pixels near the edge of the swath are elongated along-track and across-track compared to pixels near the centre of the swath, resulting in an increase of pixel area by up to a factor of ∼ 9 and, additionally, the overlap of pixels acquired from consecutive scans. The Deep Blue and Dark Target aerosol optical depth (AOD) retrieval algorithms aggregate sensor pixels and provide level 2 (L2) AOD at a nominal horizontal pixel size of 10 km, but the bow-tie distortion means that they also suffer from this size increase and overlap. This means that the spatial characteristics of the data vary as a function of satellite viewing zenith angle (VZA) and, for VZA > 30°, corresponding to approximately 50 % of the data, are areally enlarged by a factor of 50 % or more compared to this nominal pixel area and are not spatially independent of each other. This has implications for retrieval uncertainty and aggregated statistics, causing a narrowing of AOD distributions near the edge of the swath, as well as for data comparability from the application of similar algorithms to sensors without this level of bow-tie distortion. Additionally, the pixel overlap is not obvious to users of the L2 aerosol products because only pixel centres, not boundaries, are provided within the L2 products. A two-step procedure is proposed to mitigate the effects of this distortion on the MODIS aerosol products. The first (simple) step involves changing the order in which pixels are aggregated in L2 processing to reflect geographical location rather than scan order, which removes the bulk of the overlap between L2 pixels and slows the rate of growth of L2 pixel size vs. VZA. This can be achieved without significant changes to existing MODIS processing algorithms. The second step involves additionally changing the number of sensor pixels aggregated across-track as a function of VZA, which preserves L2 pixel size at around 10 km × 10 km across the whole swath but would require algorithmic quality assurance tests to be re-evaluated. Both of these steps also improve the extent to which the pixel locations a user would infer from the L2 data products represent the actual spatial extent of the L2 pixels.http://www.atmos-meas-tech.net/8/5277/2015/amt-8-5277-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. M. Sayer
N. C. Hsu
C. Bettenhausen
spellingShingle A. M. Sayer
N. C. Hsu
C. Bettenhausen
Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
Atmospheric Measurement Techniques
author_facet A. M. Sayer
N. C. Hsu
C. Bettenhausen
author_sort A. M. Sayer
title Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
title_short Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
title_full Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
title_fullStr Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
title_full_unstemmed Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
title_sort implications of modis bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2015-12-01
description The scan geometry of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, combined with the Earth's curvature, results in a pixel shape distortion known as the "bow-tie effect". Specifically, sensor pixels near the edge of the swath are elongated along-track and across-track compared to pixels near the centre of the swath, resulting in an increase of pixel area by up to a factor of ∼ 9 and, additionally, the overlap of pixels acquired from consecutive scans. The Deep Blue and Dark Target aerosol optical depth (AOD) retrieval algorithms aggregate sensor pixels and provide level 2 (L2) AOD at a nominal horizontal pixel size of 10 km, but the bow-tie distortion means that they also suffer from this size increase and overlap. This means that the spatial characteristics of the data vary as a function of satellite viewing zenith angle (VZA) and, for VZA > 30°, corresponding to approximately 50 % of the data, are areally enlarged by a factor of 50 % or more compared to this nominal pixel area and are not spatially independent of each other. This has implications for retrieval uncertainty and aggregated statistics, causing a narrowing of AOD distributions near the edge of the swath, as well as for data comparability from the application of similar algorithms to sensors without this level of bow-tie distortion. Additionally, the pixel overlap is not obvious to users of the L2 aerosol products because only pixel centres, not boundaries, are provided within the L2 products. A two-step procedure is proposed to mitigate the effects of this distortion on the MODIS aerosol products. The first (simple) step involves changing the order in which pixels are aggregated in L2 processing to reflect geographical location rather than scan order, which removes the bulk of the overlap between L2 pixels and slows the rate of growth of L2 pixel size vs. VZA. This can be achieved without significant changes to existing MODIS processing algorithms. The second step involves additionally changing the number of sensor pixels aggregated across-track as a function of VZA, which preserves L2 pixel size at around 10 km × 10 km across the whole swath but would require algorithmic quality assurance tests to be re-evaluated. Both of these steps also improve the extent to which the pixel locations a user would infer from the L2 data products represent the actual spatial extent of the L2 pixels.
url http://www.atmos-meas-tech.net/8/5277/2015/amt-8-5277-2015.pdf
work_keys_str_mv AT amsayer implicationsofmodisbowtiedistortiononaerosolopticaldepthretrievalsandtechniquesformitigation
AT nchsu implicationsofmodisbowtiedistortiononaerosolopticaldepthretrievalsandtechniquesformitigation
AT cbettenhausen implicationsofmodisbowtiedistortiononaerosolopticaldepthretrievalsandtechniquesformitigation
_version_ 1725960342134063104