A Nanoengineered Stainless Steel Surface to Combat Bacterial Attachment and Biofilm Formation

Nanopatterning and anti-biofilm characterization of self-cleanable surfaces on stainless steel substrates were demonstrated in the current study. Electrochemical etching in diluted aqua regia solution consisting of 3.6% hydrogen chloride and 1.2% nitric acid was conducted at 10 V for 5, 10, and 15 m...

Full description

Bibliographic Details
Main Authors: Ga-Hee Ban, Yong Li, Marisa M. Wall, Soojin Jun
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/9/11/1518
Description
Summary:Nanopatterning and anti-biofilm characterization of self-cleanable surfaces on stainless steel substrates were demonstrated in the current study. Electrochemical etching in diluted aqua regia solution consisting of 3.6% hydrogen chloride and 1.2% nitric acid was conducted at 10 V for 5, 10, and 15 min to fabricate nanoporous structures on the stainless steel. Variations in the etching rates and surface morphologic characteristics were caused by differences in treatment durations; the specimens treated at 10 V for 10 min showed that the nanoscale pores are needed to enhance the self-cleanability. Under static and realistic flow environments, the populations of <i>Escherichia coli</i> O157:H7 and <i>Salmonella</i> Typhimurium on the developed features were significantly reduced by 2.1–3.0 log colony-forming unit (CFU)/cm<sup>2</sup> as compared to bare stainless steel (<i>p</i> < 0.05). The successful fabrication of electrochemically etched stainless steel surfaces with Teflon coating could be useful in the food industry and biomedical fields to hinder biofilm formation in order to improve food safety.
ISSN:2304-8158